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Abstract In this paper, we derive and analyze coopera-

tive localization bounds for endoscopic wireless capsule as

it passes through the human gastrointestinal (GI) tract. We

derive the Cramer-Rao bound (CRB) variance limits on

location estimators which use measured received signal

strength (RSS). Using a three-dimension human body

model from a full wave simulation software and log-nor-

mal models for RSS propagation from implant organs to

body surface, we calculate bounds on location estimators in

three digestive organs: stomach, small intestine and large

intestine. We provide analysis of the factors affecting

localization accuracy, including various organ environ-

ments, external sensor array topology, number of pills in

cooperation and the random variations in transmit power of

sensor nodes. We also do localization accuracy analysis for

the case when transmit power of the sensor is random with

known priori distribution. The simulation results show that

the number of receiver sensors on body surface has more

influence on the accuracy of localization than the number

of pills in cooperation inside the GI tract, The large

intestine is affected the most with the transmit power

randomness.

Keywords Endoscopy capsule � RSS localization �
Cramer-Rao bound � 3D � Cooperative localization �
Power randomness

1 Introduction

Recently, wireless capsule endoscopy (WCE) has attracted

lots of attention due to its non-invasive nature. Examination of

the gastro-intestinal (GI) track is necessary to identify any

colorectal cancer inside the digestive system tube. It has been

shown that colorectal cancer has been the second leading

cause of cancer-related deaths in USA. Furthermore, WCE

allows the physician to visualize the entire GI tract without

scope trauma and air insufflations. Traditional techniques

such as gastroscopy and colonoscopy can only reach the first

few or last several feet of the GI tract. The WCE received its

approval from the U.S. Food and Drug Administration (FDA)

in 2001, and more than 200,000 patients have enjoyed the

benefits of this new technology. WCE starts with the patient

swallowing the capsule. The natural peristalsis moves the

capsule smoothly and painlessly throughout the GI track,

which is transmitting color images taken by the camera in the

capsule as it passes. The procedure is ambulatory allowing

the patients to continue with their daily activities throughout

the endoscopic examinations. Despite the advantages the

WCE have, it is reported that a physician spends one or two

hours to assess the photos taken during each WCE examina-

tion, since approximately fifty thousands photos are taken

during the eight hours period of examination [1]. This slows

down the process of examination and increases the cost of the

procedure significantly. Meanwhile, after the examination by

WCE, the physician may want to revisit the sites of interest for

further diagnosis or treatment. Accurate location information

of the capsule can help in both reducing the time needed for
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assessing the photos and assisting the physicians for follow-up

interventions.

Various technologies for localization of the capsule have

been explored in feasibility studies. The original idea is to

use a spatially scanning system to locate the points with the

strongest RSS. The system is non-commercial and cum-

bersome. Frisch et al. [2] developed a RF triangulation

system using an external sensor array that measures signal

strength of capsule transmissions at multiple points and

uses this information to estimate the distance. The average

experimental error is reported to be 37.7 mm [3]. Kuth

et al. [4] proposed a method for determining the position of

and orientation of the capsule by means of X-ray radiation

image processing. In this case, the capsule can be seen

unambiguously since it has a multiplicity of radiation-

opaque elements which are usually metallic or plastic and

show a very clear image. Thus, it is possible to operate with

an extremely low radiation dose in order to reduce the

health risks on the patients. Kawasaki [5] disclosed a

method for finding the location of medical implant devices

by using the time of arrival (TOA) based pattern recogni-

tion method. First, the propagation speed of signal inside

human body is estimate by processing the images from CT

or MRI system. Then, an adaptive template synthesis

method is applied to calculate the propagation time based

on the output of the correlator between the transmitter and

the receiver. Other techniques developed for capsule

localization include magnetic field sensing [6]. A small

permanent magnet is enclosed into the capsule. With the

sensing data of magnetic sensor array outside the patient’s

body, the 3D location and 2D orientation of the capsule are

estimated. Inertial system has also been used for capsule

localization [7]. In this work, a 3 9 3 mm digital triaxial

accelerometer, which operates at 20 Hz, was integrated

within the capsule and data was transmitted over Zigbee

technology to an external computer. Since the acceleration

is directly measured, velocity can be obtained more accu-

rately than position because it requires only a single inte-

gration. Since identifying the physical location of each

capture of capsule photo is important in both diagnostic

and therapeutic applications of WCEs.

Among these technologies, RF signal based localization

systems have the advantage of application-non-specific and

relatively low cost for implementation. Therefore, it has

been chosen for use with the Smartpill capsule [8] in USA

and the M2A capsule [9] in Israel. Generally, the RF

localization technique is based on TOA, angle of arrival

(AOA) or received signal strength (RSS) measurements. A

widely known benefit of TOA based techniques is their

high accuracy compared to RSS and AOA based techniques.

However, the strong absorption of human tissue causes

large errors in TOA estimation and the limited bandwidth

(402–405 MHz) of the Medical Implant Communication

Services (MICS) band prevent us from high resolution TOA

estimation. The problem is made even worse by the GI

movement, and the filling and emptying cycle, resulting in

unpredictable ranging error [10]. Thus, the ranging infor-

mation from TOA estimation is not promising with the

current technology.

The RSS based techniques are less sensitive to bandwidth

limitation and harsh propagation environment. There are

basically two ways to use the RSS information for locali-

zation, triangulation and pattern recognition. In this paper,

we only address the issues related to RSS triangulation

techniques. RSS Triangulation technique is based on the path

loss model from implant tissues to body surface. The model

is used to calculate the distance between each external sensor

and the capsule, then at least four link distances are used to

calculate the location of the capsule in 3D space.

The most challenge problem in capsule localization

comes from the complexity of the environment where the

capsule travels through. Since the GI tract is a long tubular

structure that folds upon itself many times and is free to move

within the abdominal cavity, it is very difficult to accurately

localize the capsule. Meanwhile, due to the activities of

patient and body passive motions such as respiration, the

absolute location of sensors on the surface of the body and

their relative positions to the capsule inside body keep

varying, making the definition of localization different from

traditional scenarios. Currently, most of the researchers have

focused on developing the algorithms and mathematical

models for solving the triangulation problem [3, 11]. In this

paper, we take a different approach. Based on the statistical

implant path loss model developed in [12], we focus on the

accuracy possible for capsules in the GI tract using RSS

based triangulation technique, Yi et al. have developed the

localization bound calculation for single pill situation in

[13]. The Cramer-Rao bound (CRB) presented in this paper

quantify the limits of localization accuracy with certain

reference-points topology, implant path loss model and

number of pills in cooperation. Our aim is to analyze the

accuracy achievable at various organs and determine if the

accuracies are enough for endoscopy applications. Similar

works have been done for indoor geolocation applications

[14] and robot localization applications [15].

We begin in Sect. 2 by summarizing the performance

evaluation methodology which includes the scenario

description and the implant to body surface path loss model

for GI tract environment. Next, using the coordinates value

from scenario and the path loss model, we derive the CRB

for cooperative capsule localization and the localization

bound with randomness in the transmitted power in Sect. 3.

In Sect. 4, we provide results of simulation which highlight

the network and organ location parameters that affect the

localization accuracy. Finally, we conclude the paper in

Sect. 5.
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2 Performance Evaluation Methodology

2.1 Performance Evaluation Scenario

The GI tract consists of the esophagus, stomach, small

intestine, and large intestine, as shown in Fig. 1. In order to

create a simulation scenario for calculating the CRB of

wireless capsule as it travels through the human digestive

system, we use a 3D human model from the three-dimen-

sional full-wave electromagnetic field simulation system

(Ansoft [16]). The 3D human body model has a spatial

resolution of 2 mm and includes frequency dependent

dielectric properties of 300? parts in a male human body.

We extract the 3D coordinates of digestive organs from the

human body model, which is illustrated in Fig. 2.

For the design of the topology of receiver sensors on body

surface, we followed the idea in [2], assuming the receiver

arrays are placed on a jacket wared by the patient during the

examination. Same number of receivers are fixed in front and

on the back of the jacket. We calculated the CRB for 8, 16, 32

and 64 receiver sensors with a three dimensional range of

268 9 323 9 312 mm, a typical network topology for 32

receiver sensors is illustrated in Fig. 3.

2.2 Path Loss Model for GI Tract Environment

In this section, we describe the statistical implant to body

surface path loss model which is used for calculating the

CRB of WCE localization. The model was developed by

National Institute of Standards and Technology (NIST) at

MICS band [12]. The main components used for devel-

oping the model include: a three-dimensional human body

model, the propagation engine which is a three-dimen-

sional full wave electromagnetic field simulator, the 3D

immersive and visualization platform and implantable

antenna.

The path loss in dB at some distance d between the

transmitter and receiver can be statistically modeled by the

following equation:

LpðdÞ ¼ Lpðd0Þ þ 10a log10ðd=d0Þ þ Sðd [ d0Þ ð1Þ

where d0 is the reference distance (i.e. 50 mm), and a is the

path loss gradient which is determined by the propagation

environment. For example, in free space, a = 2. As we

already mentioned, human body tissue strongly absorbs RF

signal. Therefore, much higher value for the path loss

gradient is expected. S is a random variable log-normally

distributed around the mean which represents the deviation

caused by shadowing effect of human tissue.

The parameters of the implant to body surface path loss

model are summarized in Table 1.

In Table 1 rdB is the standard deviation of shadow fading

S. Note that there are two sets of parameters for path loss from

deep and near surface implant to body surface. During our

Fig. 1 A schematic of the GI tract. The typical path of a WCE is

along the red and blue line (Color figure online)

Fig. 2 Comparison of CRB on 1 - r uncertainty ellipses. When transmitted power are perfectly known (solid line in red) or random with

rp = 10 dB (sashed lines in black), for different unknown capsule locations (Color figure online)
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simulation, we use 10 cm distance between the transmitter

and receiver on body surface as the threshold for choosing the

model. If the distance is less than 10 cm, we use the near

surface to surface path loss model, otherwise the deep tissue to

surface model is used, One illustration of how we select the

models for various receiver sensors shown in Fig. 4.

2.3 Randomness in Transmit Power

In realistic sensor networks, the sensors do not know their

precise transmitted power level due to cost of the device cal-

ibration. Although, they may report that the transmitted power

is at a particular level, the actual power transmitted varies by

few dBs about this nominal value [17]. The major factors that

causes transmitted power variance for body area networks are

listed as follows: (a) device manufacturing variation and

battery level variation from sensor to sensor, (b) movement of

the human body due to locomotion and changes in the ori-

entation of the antenna, (c) the sensor antennas might not be at

the same distance from the human body surface at a given

time. Some antennas might be touching the body while others

might be few mm’s away from the body. As reported in [18],

antenna touching the body has a lower gain than the antenna

15 mm away from the body. All these factors contribute to the

randomness in the transmitted power which affects the

localization accuracy.

3 CRB for 3D Capsule Localization

In this section, we derive the 3D CRB based on the path

loss model discussed in the previous section. We consider

both situations where multiple capsules are in cooperation

and when there is randomness in power. The CRB for 2D

localization bounds has been derived in [19]. Here, we

derive the bounds in three dimensions by extending the

results obtained in two dimensions.

3.1 CRB for Multicapsule Cooperative Localization

Based on the path loss model in Sect. 2, we derive the 3D CRB

for cooperative localization in WCE. The scenario we con-

sider is as follows, N wireless endoscopic capsules are dis-

tributed in the digestive system with location given by

hc ¼ p1; . . .; pN½ �:These pills are blindfolded devices but they

can measure the RSS from each other and transmit the infor-

mation out to the receiver array for further processing. M

receiver sensors are placed on the surface of the human body

with location given by hr ¼ pNþ1; . . .; pNþM½ �: The vector of

device parameters is h = [hc hr ]. For this three dimensional

system, pi = [xi, yi, zi]
T, where i 2 ½1;N þM� and T is the

transpose operation. The unknown parameters to be estimated

can be represented by a 3 9 N coordinates matrix.

hc ¼ ½p1; p2; . . .; pN � ¼
x1 x2 . . . xN

y1 y2 . . . yN

z1 z2 . . . zN

2
4

3
5 ð2Þ

Consider devices (devices include capsules and

receivers) i and j make pair-wise observations Xi,j. We

assume each receiver sensor can measure the RSS from all

the capsules inside the body, but the path loss parameters

for different links varies as the distance between the

receiver sensor and capsule inside the body changes.

Therefore, Let H(i) = {j: device j makes pair-wise

observations with device i}. Hfig ¼ f1; . . .i� 1; iþ
1; . . .N þMg for i 2 ½1;N� and Hfig ¼ f1; . . .Ng for i 2
½N þ 1;N þM� because a device cannot make pairwise

Fig. 3 WCE cooperative localization scenario

Table 1 Parameters for the statistical implant to body surface path

loss model

Implant to body surface Lp(d0) (dB) a rdB

Deep tissue 47.14 4.26 7.85

Near surface 49.81 4.22 6.81

Fig. 4 Path loss model selection (32 receiver sensors, stomach)
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observation with itself and the receivers do not make

observations with receivers either. Therefore the length of

the observation vector X is N 9 (N ? M - 1) ? M 9 N.

By reciprocity, we assume Xi,j = Xj,i; thus, it is suffi-

cient to consider only the lower triangle of the observation

matrix X when formulating the joint likelihood function

[20]. The CRB on the covariance matrix of any unbiased

estimator ĥ is given by [21]:

covðĥÞ ¼ E ðĥ� hÞðĥ� hÞT
h i

�F�1
h ð3Þ

where E �½ � is the expectation operation and F is the Fisher

information matrix (FIM) defined as:

Fh ¼ �Erhðrh ln f ðXjhÞÞT

¼ Eh
o

oh
ln f ðXjhÞ o

oh
ln f ðXjhÞ

� �T
" #

¼
FRxx FRxy FRxz

FT
Rxy FRyy FRyz

FT
Rxz FT

Ryz FRzz

2
64

3
75ð3D situationÞ

ð4Þ

where f(X|h) is the joint PDF of the observation vector X

conditioned on h. For the RSS measurements case, the Xi,j are

log-normal random variables, and the density is given by [19]

f ðXi;jjpi; pjÞ ¼
10= log 10ffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
dB

p 1

Xi;j
exp � b

8
log

d2
i;j

~d2
i;j

 !2
2
4

3
5

b ¼ 10a
rdB

� �2

~di;j ¼ d0

X0

Xi;j

� �1
a

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2

q

ð5Þ

for i ¼ 1; 2; . . .;N þM and j 2 HðiÞ; ~dði; jÞ is the MLE of

range di,j given received power Xi,j. Then the logarithm of

the joint condition pdf is:

lðXjhÞ ¼
XMþN

i¼1

X
j2Hij\i

log fXjhðXi;jjpi; pjÞ ð6Þ

It is shown in [19] that the second partial derivative of

(6) w.r.t hr and hs will be a summation of terms if hr and hs

are coordinates of the same device k, but will be only one

term if hr and hs are coordinates of different devices k and

l, k = l. For example:

o2lðXjhÞ
oxkozk

¼ �b
X

i2HðkÞ
ðxi � xkÞðzi � zkÞ

d4
i;k

� log
d2

i;k

~d2
i;k

þ 1

" #

o2lðXjhÞ
oxkozl

¼ �bIHðkÞðlÞ
ðxi � xkÞðzi � zkÞ

d4
i;k

log
d2

i;k

~d2
i;k

� 1

" #
ð7Þ

where IH(k) (l) = 1 if l 2 HðkÞ and 0 otherwise. Since

E
d2

i;k

~d2
i;k

� �
¼ 0: Thus, the elements of Fh are:

½FRxx
�k;l ¼

b
P

i2HðkÞ
ðxk�xiÞ2

d4
ki

k ¼ l

�bIHðkÞðlÞ ðxk�xlÞ2
d4

kl

k 6¼ l

8<
: ð8Þ

½FRxy
�k;l ¼

b
P

i2HðkÞ
ðxk�xiÞðyk�yiÞ

d4
ki

k ¼ l

�bIHðkÞðlÞ ðxk�xlÞðyk�ylÞ
d4

kl

k 6¼ l

8<
:

½FRxz
�k;l ¼

b
P

i2HðkÞ
ðxk�xiÞðzk�ziÞ

d4
ki

k ¼ l

�bIHðkÞðlÞ ðxk�xlÞðzk�zlÞ
d4

kl

k 6¼ l

8<
:

½FRyy
�k;l ¼

b
P

i2HðkÞ
ðyk�yiÞ2

d4
ki

k ¼ l

�bIHðkÞðlÞ ðyk�ylÞ2
d4

kl

k 6¼ l

8<
:

½FRyz
�k;l ¼

b
P

i2HðkÞ
ðyk�yiÞðzk�ziÞ

d4
ki

k ¼ l

�bIHðkÞðlÞ ðyk�ylÞðzk�zlÞ
d4

kl

k 6¼ l

8<
:

½FRzz
�k;l ¼

b
P

i2HðkÞ
ðzk�ziÞ2

d4
ki

k ¼ l

�bIHðkÞðlÞ ðzk�zlÞ2
d4

kl

k 6¼ l

8<
:

Let x̂i; ŷi; ẑi be the unbiased estimation of xi, yi, zi, the trace

of the covariance of the ith location estimate is given by:

r2
i ¼ tr covhðx̂i; ŷi; ẑiÞf g
¼ Varhðx̂iÞ þ VarhðŷiÞ þ VarhðẑiÞ

� FRxx
� ðFRxy

FRxz
Þ

FRyy
FRyz

FRyz
FRzz

 !�1
FRxy

FRxz

� �2
4

3
5
�1

i;i

þ FRyy
� ðFRxy

FRyz
Þ

FRxx
FRxz

FRxz
FRzz

� ��1 FRxy

FRyz

 !" #�1

i;i

þ FRzz
� ðFRxz

FRyz
Þ

FRxx
FRxy

FRxy
FRyy

 !�1
FRxz

FRyz

 !2
4

3
5
�1

i;i

ð9Þ

3.2 CRB for Capsule Localization with Randomness

in Power

Here, the unknown parameters to be estimated is x, y and z

coordinate of the capsules, and a new vector p ¼
½p01; . . .; p0N � since none of the N sensors have perfect

knowledge of their transmit power. The Bayesian CRB [21]

also called as Van trees inequality states that any estimator ĥ
must have error correlation matrix R2 satisfying

R2[ F�1 ¼ ½Fh þ Fp� ð10Þ
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where R2 ¼ E½ðĥ� hÞðĥ� hÞT �, with Fh and Fp are the

FIM and prior information matrix respectively and are give

by Eq. 11

Fh ¼ �E 5hð5h ln f ðpi;jjhÞÞT
� �

Fp ¼ �E½5hð5h ln f ðhÞÞT �
ð11Þ

where pi,j is the bi-directional measurement vector. The

prior information matrix Fp is given in Eq. 12

Fp ¼ diag 0T
n ; 0

T
n ; 0

T
n ; 1

T
N=r

2
p

� �
ð12Þ

where 0n is a n-length vector of zeros and 1N is an N length

vector of ones and rp
2 is the variance of the random variable

p0i (the power at 1 cm distance from transmitter i) which is

assumed to have an i.i.d Gaussian prior for every sensor i.

We model the bi-directional measurements Pi,j and Pj,i

using vector pi,j = [Pi,jPj,i] as a bi-variate gaussian with

mean ui,j and variance Ci,j, where

ui;j ¼
p0j � 10a log10

jri�rjj2
42

0

p0i � 10a log10
jri�rjj2
42

0

2
4

3
5 ð13Þ

Ci;j ¼ r2
dB

1 q
q 1

� �
ð14Þ

where a is the path loss exponent, and q is the correlation

coefficient between the bidirectional measurements,

0 B q B 1. For the purpose of discussion we transform

the bidirectional measurement vector pi,j by an orthogonal

matrix A as:

~pi;j ¼ Api;j; A ¼ 1 1

1 �1

� �
ð15Þ

such a full rank transformation of measurement does not

change the Fisher information. For simplicity of notation,

we denote ~pi;j ¼ ½�pi;jp
4
ij �

T
, where �pij corresponds to the

average of the two measurements and p4ij corresponds to

the difference between the two measurements. After some

mathematical analysis, it is seen that �pij has a mean �uij and

covariance �C and p4ij has a mean u4ij and covariance C4 as

given below:

�uij ¼ p0jþp0i� 10a log10

jri� rjj2

42
0

; �C¼ ð1þqÞr2
dB

2
I3nþN

u4ij ¼
p0j�p0i

2
; C4 ¼ ð1�qÞr2

dB

2
I3nþN

ð16Þ

where I3n?N is 3n ? N 9 3n ? N identity matrix and �u

and u4 are the mean values of the sum and difference of

measurements respectively for all measurement pairs,

�u ¼ ½�ui1;j1 ; . . .; �uis;js �
T ; u4 ¼ ½u4i1;j1 ; . . .; u4is;js � ð17Þ

where i1; j1; . . .; is; js corresponds to each unique pair. A pair

makes measurement if they are in the measurement range of

each other. Here we assume that the measurement range is

infinite (i.e., every sensor can do measurements with every

other sensor). The Fisher information matrix Fh given in Eq. 11

can be split into two sub matrices �Fh and F4h corresponding to

sum and difference measurements due to their independence.

Fh ¼ �Fh þ F4h ð18Þ

The FIM of a vector of multivariate Gaussian

measurements with mean l(h) and covariance C is given

by [17]

Fh ¼ ½5hlðhÞ�T C�1½5hlðhÞ�

¼

FRxx FRxy FRxz FRxp

FRyx FRyy FRyz FRyp

FRzx FRzy FRzz FRzp

FRpx FRpy FRpz FRpp

2
664

3
775 ð19Þ

From Eq. 18, we have,

�Fh ¼ ½5h�l�T C�1½5h�l� ¼

�FRxx
�FRxy

�FRxz
�FRxp

�FRyx
�FRyy

�FRyz
�FRyp

�FRzx
�FRzy

�FRzz
�FRzp

�FRpx
�FRpy

�FRpz
�FRpp

2
664

3
775

ð20Þ
�F4h ¼ ½5hl

4�T C�1½5hl
4�

¼

�F4Rxx
�F4Rxy

�F4Rxz
�F4Rxp

�F4Ryx
�F4Ryy

�F4Ryz
�F4Ryp

�F4Rzx
�F4Rzy

�F4Rzz
�F4Rzp

�F4Rpx
�F4Rpy

�F4Rpz
�F4Rpp

2
66664

3
77775

ð21Þ

The derivation of the individual elements of the matrix are

similar to Eq. 8, and given in [22].

4 Simulation Results

4.1 Setup

The simulation setup is based on the application of WCE

requiring localization of capsule in stomach, small intestine

and large intestine environments. Esophagus is not included

as a simulation scenario because traditional upper endoscopy

techniques are powerful enough to diagnose diseases in it. M

receiver sensors are distributed evenly on the surface of the

body torso, see Fig. 3. N capsule pills are then distributed

inside the GI tract environment. Connectivity is assumed

between capsule pills and the receiver sensors and among

capsule pills. The path loss parameters are determined by the

length of each connection as mentioned in Sect. 2.

For the analysis of the simulations, we compute the

average RMS of the location error of each situation. For the
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case of N different capsule locations, the RMSE is com-

puted by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 r2

xi
þ r2

yi
þ r2

zi

q

N
ð22Þ

where r2
xi
; r2

yi
; and r2

zi
are the variance of each coordinate

value of the ith pill location.

4.2 Effect of Organ Shape and Location

In this section, we evaluate the impact of the organ shape and

location on localization accuracy. For the simulation, we

fixed the number of receiver sensors to 32 and assumed only

one single capsule in each organ. We calculated the 3D-CRB

for all the possible location points inside each organ (634

points for stomach, 1,926 points for small intestine and 3,334

points for large intestine). Figure 5 shows the CDF com-

parison of location error bound in different organs.

Notice that the localization error for capsule in small

intestine is apparently smaller than that in large intestine.

The average value of rerror for small intestine environment

is 45.5 mm, while it is 49 mm for large intestine envi-

ronment. The localization error for capsule in stomach has

the lowest average value but distributed in a wider range

compared to the errors in other two environments. These

observations can be explained by the geometric relation-

ship between the sensor array and the organs. As we can

see from Fig. 4, stomach is located in the upper part of the

receiver sensor array system, and its volume is the smallest

among the three organs. Therefore, the localization error

varies more in the stomach environment. The points loca-

ted in the upper part of stomach have larger localization

error value as they are far from the center of the receiver

array system, the points in the lower part of stomach have

smaller localization error value. The small intestine is

located in the center part of human abdomen cavity and the

lumen is more centralized compared to large intestine.

Therefore, the localization error inside small intestine is

smaller than that in large intestine.

4.3 Effect of Number of Receiver Sensors

In this section, we investigate the impact of number of

receiver sensors on localization accuracy. In this experi-

ment, 12,000 Monte Carlo simulations (3 different organs,

4 different number of receiver sensors and 1,000 simula-

tions per organ) were carried out with the number of

receiver sensors varied from 8 to 64. During each simula-

tion, we assume one capsule is located randomly inside

each organ. The results show that the number of receivers

has significant influence on the accuracy of localization

when the number of receivers is smaller than 32. The

localization accuracy in small intestine is less sensitive to

the number of receivers. This means that large intestine and

stomach are harsher implant environments for RF locali-

zation which requires more receiver sensors on body sur-

face to achieve similar localization performance as

environments with better geometric and channel condition.

Finally, notice that for all the three organs, at least 32

receiver sensors are needed to guarantee the performance

of 50 mm average RMSE (Fig. 6).

4.4 Effect of Sensor Configuration

In this simulation, three different sensor placement for

receiver sensors are considered which represents the

potential sensor arrangement in practice as shown in Fig. 7.
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Half of the sensors are on the front plane of the jacket and

half of them are in the rear plane of the jacket. These sensor

configurations can be seen to have three distinct forms

namely, Config1: sensors uniformly distributed in both the

planes of the jacket, Config2: sensors concentrated at the

center of the jacket, and Config3: sensors concentrated at

the borders of the jacket. Figure 8 shows the RMSE of the

three different sensor population for all three configura-

tions. It can be observed that better performance is

achieved when the sensors are concentrated near the center

of the jacket. Arranging all the sensors concentrating on the

boundary should be avoided since such configuration per-

forms the worst.

4.5 Effect of Number of Pills in Cooperation

Next, we investigate the impact of cooperation among pills.

For this simulation, we fixed the number of receivers on body

surface to 32 and increased the number of pills from 1 to 5.

The pills are assumed to be randomly distributed inside each

organ and they can measure the RSS from each other. 15,000

simulations were carried out to study the effect of coopera-

tion among pills. The results are presented in Fig. 9. It is

shown that as the number of pills increase from 1 to 5. The

localization accuracy in all three organs improved, espe-

cially for large intestine and stomach environments. Local-

ization accuracy in small intestine is again less sensitive to

the number of pills which means it is a lighter environment

for RF propagation and geometrically better surrounded by

the receiver array. Notice that in practical situations, we do

not want to send a lot of capsules into a patient due to the

potential danger of digestion disorder and uncomfort for

patient. Compared to the impact of number of receiver sen-

sors, the number of pills in cooperation has less influence on

the accuracy of localization. Therefore, our results indicate

that increasing the number of receiver sensors on body sur-

face is a more effective way to improve the overall locali-

zation performance than increasing the number of pills in

cooperation for RSS based capsule localization.

4.6 Effect of Random Power on the Bounds

in Different Organs

In this section, we calculate the bounds for different organs

when there’s randomness in the transmitted power. We plot the

lower bound on the 1 - runcertainty ellipse for r̂i; the estimate

of the ith capsule sensor coordinate. In this example, we use

rdB = 7.85 and a = 4.26 based on the path loss model

Fig. 7 Three sensor configuration considered for analysis of the

bounds (number of sensors = 64)

Fig. 8 Three sensor configuration considered for analysis of the

bounds (number of sensors = 64)
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discussed in Sect. 2. For the simulation, we consider

q = 0.704. The bounds behaves similar at different values of q.

We also found the bounds as a function of q. Finally, in these

examples, the prior knowledge of transmit power is

rp = 10 dB. We also consider the case when rp = 0 dB for

comparison purpose.

For perfectly known transmit power (i.e. rp = 0 dB),

the uncertainty ellipse is shown by solid lines whereas for

rp = 10 dB, it is shown by dotted lines. As we can see in

Table 2, the increase in the RMSE for all three organs

when, randomness in the transmit power exist.

Figure 2 shows corresponding bound in each organ indi-

vidually. It is observed with given configuration of anchor

nodes capsules in large intestine suffered the largest locali-

zation error when there was variance in transmit power. For

small intestine, the value of RMSE for rp = 0 dB was

22.1399 mm and for rp = 10 dB was 22.4024 mm.

4.7 Performance as a Function of r and q

Next, we calculate the bound over the entire range of corre-

lation coefficient values. Here, we have used a grid of 64

sensors with configuration number 3. The rest of the param-

eters are kept the same as the previous simulations. In this

experiment, the capsule is assumed to be in any one of the

three organs and the average performance bounds as a func-

tion of q is calculated. As seen in Fig. 10, as q! 1 the lower

bounds are not affected with randomness in transmitted power

as much as it is affected at lower value of q. Also, at lower

values of q, the RMSE is lower than that at the higher values.

5 Conclusion

In this paper, we investigated the potential accuracy limit for

RSS triangulation based capsule localization in the human GI

tract. We verified the possibility of achieving average locali-

zation error 50 mm in the digestive organs. We also verified

that more than 32 sensors on body surface is needed for

achieving satisfying localization accuracy for capsule endos-

copy. Simulation results showed that increasing the number of

receiver sensors on body surface has more influence of the

overall localization performance than increasing the number

of pills inside the GI tract. We also analyzed the effect of

randomness in transmit power on the localization accuracy.

Considering the practical issues, we draw the conclusion that

increasing the number of receiver sensors is a better way for

reaching higher accuracy for capsule localization.
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