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Abstract—The hybrid localization system applications nowa-
days not only mitigate the inaccuracy of standalone RF lo-
calization approach, but also increase the reliability in the
absence of supporting Radio Frequency (RF) infrastructure. One
of the outstanding hybrid approaches is the Radio Frequency
Identification(RFID) assisted inertial navigation system, which is
notable for its low cost, simple implementation and extraordinary
accuracy. Previous work on such hybrid system fails to find
out the correlation between the deployment of the multiple
calibration points and the indoor localization accuracy. In this
paper, we use the Android smart phone to build a hybrid
localization platform and conduct measurements with multiple
RFID calibration tags. Based on the measurement results, we
define a mathematical model which includes the calibration point
number, RFID tag density and the RFID tag-to-corner distance to
describe the deployment effect on the localization accuracy. Such
model facilitates the future study on algorithm design, system
evaluation and application development.
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I. INTRODUCTION

Nowadays, the rapid advancement of wireless access and
localization technology not only provides high data rate wire-
less communication, but also realizes the precise indoor lo-
calization [1]. With the well known received signal strength
(RSS), time-of-arrival (TOA), angle-of-arrival (AOA) based
approaches, location information can be obtained even in the
indoor area that global positioning system (GPS) could never
cover. Since wireless indoor localization requires the prior
knowledge of the reference points and suffers from the multi-
path phenomenon caused by complicated indoor environment,
the traditional pedestrian dead reckoning method maintains its
priority in the absence of supporting infrastructure [2] [3]. To
further improve the localization accuracy for critical cases such
as localizing patients, prisoners and first responders, research
campaign proposed cooperative localization applications to
combine multiple approaches [4] [5].

Among all available hybrid localization technologies, RFID
assisted approach is always under the limelight for its low
energy consumption, low cost characteristic and simple imple-
mentation. With the concept of smart building widely spread,
the trend of using RFID tag in cooperative localization get
further promoted to the maximum. Ni et al. proposed ‘LAND-
MARK’, the first prototype system using active RFID technol-
ogy to obtain location information in indoor environment [6].

More recently, Ruiz et al. reported a pedestrian navigation
system using tightly coupled foot-mounted IMU and RFID
ranging to achieve accurate indoor localization [7]. These ap-
plications utilize RFID tag as transceivers and require ranging
process. Apart from that, other researches regard the RFID tag
as a calibration point with small enough coverage that serve as
a landmark for pass-by objects. Such works include the RFID-
assisted localization system for first responders [8] [9]; Self-
calibrated RFID tags in smart factory [10] and even location
estimation system for construction materials [11]. Note that in
this work, we focus on the second category of RFID assisted
indoor localization and employ the RFID tag for calibration
purpose only.

The above mentioned works in the open literature generally
focused on system implementation, algorithm optimization,
robustness to multipath and etc., however, they merely looked
into the influence of RFID tag number or geometrical deploy-
ment of the tags. Ruiz et al. graphically illustrated the effect of
tag numbers but failed to quantitatively model it [7]; Hameed et
al. tried to sparsely distribute the tags in the smart factory and
evaluated multiple deployment topology but did not report any
mathematical model regarding tag location [10]. Although it is
intuitive that avoiding linearly-aligned, close-range calibration
tags may help getting better dilusion of position (DOP) [12],
yet an optimized way of tag deployment is still essential and
urgently demanded for both academic and industry.

In this paper, the performance of RFID assisted inertial
navigation system has been measured in a typical office envi-
ronment with different number of calibration RFID tags and
various combination of tag locations. Based on the empirical
data, the effect of calibration tag number and tag locations
have been investigated. In order to quantitatively describe these
effects, mathematical model for average localization error has
been built using tag number, tag-to-corner distance and tag
density as parameters. The proposed model can be uniformly
used in general scenario given floor layout, which may benefit
future tag deployment optimization and system performance
evaluation to a large scale.

The remainder of this paper is organized as follows. In sec-
tion II, the measurement scenario and measurement system has
been introduced and necessary definitions has been provided
for further analysis. In section III, the effect of tag deployment
has been analyzed from the perspective of calibration tag
number, tag-to-corner distance and tag density. In section
IV, regression fitting has been applied to empirical data and
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Fig. 1. 2D floor layout for Atwater Kent building, WPI.

mathematical model has been built to illustrate the influence
of tag deployment on localization accuracy. In section V, we
summarize this paper and discuss future work.

II. SCENARIO AND SYSTEM SETUP

In this section, the measurement scenario, system setup as
well as necessary parameter definitions have been discussed.
We conducted on-line measurement for pedestrians dead reck-
oning (PDR) indoor navigation in a typical office floor and
the assistance of RFID calibration tags is achieved by off-
line software simulation. Since this work focus on small range
calibration tags with directional antenna, we assume that the
RFID calibration has a 0.1m accuracy so that the calibration
process can be simplified as moving the PDR particle with
state (x̂i, ŷi, θ̂i) back to a random location within 0.1m radius
to the calibration tag location. For PDR measurements, x̂i,
ŷi denotes to the coordinate estimate for ith particle and θ̂i
denotes to the heading.

A. Measurement Scenario
On-line measurement for PDR navigation is performed at

the 3rd floor of the Atwater Kent Laboratory, the office
building of ECE department, Worcester Polytechnic Institute,
Worcester, MA, USA. As shown in Fig. 1, there is a rectangular
path along the main corridor of 27.6 × 20.4m. The objective
first and foremost goes through a training process to obtain the
average step length l and then walks along the main corridor
on a constant speed, holding the smart phone in hand. The
measurement starts from the bottom left corner of the path and
lasts for three entire cycles. Note that constant walking model
is not a limitation on this work, preliminary results shows that
following discussion still applied to random walking situation
and it will be mentioned in future publications.

B. System Setup
The entire measurement process is performed using a self-

designed android application on Samsung Exhibit II SGH-
T679 smart phone, which runs on any android system above

version 2.2 and is embedded with accelerometer and compass
for step detection and heading measurement respectively. Ev-
ery time a step is detected, a PDR particle is recorded in
the format of (x̂i, ŷi, θ̂i) based on coordinate and heading
measurement on previous step. The update process of particles
can be given as

x̂i+δi = x̂i + (l + nl) cos(δθ̂ + nθ) (1)

ŷi+δi = ŷi + (l + nl) sin(δθ̂ + nθ) (2)

θ̂i+δi = θ̂i + δθ̂ + nθ (3)

where δi is the step counts from the last known particle,
δθ̂ denotes the the heading change, nl and nθ are noise
terms drawn from the step length and heading uncertainty
models respectively. The iterative process indicates that the
beginning state is required for this approach. Note that due to
the metallic structure of the building and dense RF devices
in some of the rooms, the heading measurement could be
erroneous. Inaccuracy on steps length is also possible since the
training performance is limited to some scale. To represent the
above mentioned uncertainty, the localization error for specific
PDR particle is defined as

ϵi(d) =
√
(x̂i − xi)2 + (ŷi − yi)2 (4)

where xi, yi are the ground true coordinate for ith PDR
particle.

C. Parameter Definitions

Apart from the state information of PDR particles, calibra-
tion tag locations is also recorded during our experiments.
RFID tags are by nature attached to the walls and very
frequently appears close to corridor corners for the sake of
convenience and aesthetics. Also, the ultimate goal is to track
objectives in the public area instead of private room. We
consider RFID tags deployed along the path in the main
corridor. The candidate set for calibration point number in
this work can be given by m ∈ M = {1, 2, ...,M} where
m denotes the index of mth RFID calibration tag and M = 8
in this work. Since dramatic heading change can be detected
at the corners along the path, tags attached to the corner
may intuitively limited the inaccuracy caused by heading
measurement. To represent how far are the calibration tags
located from the corners, we define the tag-to-corner distance
dcorner as the average of distances between each tag and its
nearest corner on the floor layout, which can be given as

dcorner =
1

M

∑
m∈M

[min
j∈J

(
√
(xm − xj)2 + (ym − yj)2)] (5)

where xm, ym are the coordinate for mth RFID calibration
tag and xj , yj are the coordinate for jth corner. In this
specific measurement scenario, candidate set for corner index
is j ∈ J = {1, 2, 3, 4}. Moreover, to represent the influence of
homogeneous density of tag deployment, we define tag density
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Fig. 2. Sample calibration tag deployment when n = 4.

ddense as the average of distance between adjacent tags, which
is given by

ddense =
1

M − 1
[P − max

m∈M
(γm,m+1Mod(M)

)] (6)

where P is the total length of the target trajectory, which is
along the rectangular path in this work, γm,m+1Mod(M)

denotes
the distance between adjacent tags along trajectory and is given
as

γm,m+1Mod(M)
=

∫
Cm,m+1

fds =

∫ tagm+1Mod(M)

tagm

f(r(t))|r′(t)|dt

(7)
where Cm,m+1 is the trajectory between mth and m + 1th

calibration tag, f is the scaler field and is constant 1 for
2D case, tagm = (xm, ym) denotes the coordinate for mth

calibration tag, r(t) represents the sample point for line
integral. Since we have to take the γM,1 into consideration
in the max(•) operation in (6), Mod(M ) calculation has been
included. Typical test case has been illustrate in Fig. 2, in
which the tag number and distance between adjacent tags has
been specified. Note that the density employed in this paper
is a linear density instead of spatial density due to the fact
that the ultimate goal is to track objectives in the public area
instead of private room. It is worth mentioning that with the
priori knowledge of floor layout, the line integral can be easily
simplified into summation of distance along the trajectory,
reducing the computational complexity to the minimum.

Based on the pre-defined parameters, with given calibration
tag deployment, the localization error for specific target posi-
tion can be defined as

ϵn,dcorner,ddense =
√
(x̂n,dcorner,ddense − x)2 + (ŷn,dcorner,ddense − y)2

(8)
where x̂n,dcorner,ddense , ŷn,dcorner,ddense denote to the location esti-
mate given specific calibration tag number and tag deployment.
Throughout the off-line software simulation for various tag
locations, we include all possible combination of n, dcorner and
ddense.

III. EFFECT OF TAG NUMBER, TAG-TO-CORNER
DISTANCE AND TAG DENSITY

General localization error for the RFID assisted inertial
navigation system has been plotted in Fig. 3 and Fig. 4. In
Fig. 3, with no calibration, it is very obvious that localization
result keeps drifting away from the ground truth. Such drifting
phenomenon agree with the pure PDR system performance
bound reported in previous works. When RFID calibration
tag gets involved, localization performance gets improved to
a large degree and the drifted result is pulled back to ground
truth even though the uncertainty still exists. Conclusion can

25 30 35 40 45 50 55 60
-5

0

5

10

15

20

25

30

35

40

X axis

Y
 a

x
is

no calibration

 

 

tracking path

ground truth

Fig. 3. Empirical result for pure PDR navigation without RFID calibration
points.
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Fig. 4. Empirical result with RFID assisted multiple calibration. (a) n = 1;
(b) n = 2; (c) n = 4; (d) n = 8.
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Fig. 5. CDF plot for the effect of tag number and tag locations. (a) Effect of calibration tag number; (b) Effect of calibration tag-to-corner distance; (c) Effect
of calibration tag density.

be drawn from Fig. 4 is that with the increment of calibration
point number, localization accuracy becomes better. To better
illustrate the statistics of the empirical result, cumulative
density function of ϵn,dcorner,ddense for localization accuracy with
different number of calibration tags has been depicted in Fig.
5(a), from which we can see that for a given floor layout,
a sufficient number of calibration tag can be implied. If the
tag number is more than adequate, the extra tags have very
limited contribution on the performance improvement. In this
work, sufficient number would be 4 tags. When using 8 tags to
calibrate the PDR system, performance improvement is highly
limited.

As for the influence of tag-to-corner distance, the experi-
mental result shows that RFID calibration tags in the corner
contribute more on the improvement of localization perfor-
mance. Statistic for the effect of tag-to-corner distance has
been illustrated in Fig. 5(b), in which the CDF for ϵn,dcorner,ddense

has been plotted with four calibration tags, same tag density
but various tag-to-corner distance. Identical tag density can
be guaranteed by initiate the four calibration tags at the four
corner and step by step move the tags along same direction. As
long as the step size is constant, tag density will not change.
Statistics show that with the increment of dcorner, localization
error becomes larger, indicating that it is preferred to deploy
calibration tags as close to corners as possible.

The effects of tag density can not be ignored since in most
of the previous work of INS with multiple calibration, people
always tried to figure out a way to uniformly deploy the cali-
bration points. Four tag calibration case has been again plotted
in Fig. 5(c) with fixed tag-to-corner distance and various tag
density. It shows that with uniformly deployed calibration tags,
best localization performance can be achieved. The integrated
analysis on the effect of tag number and tag locations propose
a tough question on the optimized deployment, that is, how
can we manage the trade-off among tag number, tag-to-corner
distance and tag density. To answer that question, we proposed
a mathematical model to support deployment optimization.

IV. MODELING THE EFFECT OF TAG DEPLOYMENT

To quantitatively describe the trade-off among n, dcorner
and ddense, mathematical model on localization error has been
proposed in this section. The empirical data shows that local-
ization error ϵi(d) can be modeled as a uniformly distributed
random variable and as long as we have at least one calibration
point, the variance of ϵi(d) is limited in a small range. Based
on that observation, we focus on the average localization error
ϵn,dcorner,ddense and do not take the variance into consideration.
By further examining the empirical measurement results, we
notice that for a given n and dcorner, linear relationship between
ϵn,dcorner,ddense and ddense can be obtained as

ϵn,dcorner,ddense = An,dcorner × ddense +Bn,dcorner (9)

where An,dcorner and Bn,dcorner are intermediate coefficients de-
pends on calibration number n and tag-to-corner distance
dcorner. Case specific fitting result for ϵn,dcorner,ddense has been
plotted in Fig. 6(a) in which four calibration tags are employed.
Exploiting An,dcorner and Bn,dcorner for different calibration tag
number, we can further model the relationship between inter-
mediate coefficients and tag-to-corner distance as{

An,dcorner = Cn × dcorner +Dn

Bn,dcorner = Bdcorner = E × dcorner + F
(10)

TABLE I. COEFFICIENTS FOR THE PROPOSED MODEL.

n Cn Dn E F

2 0.00187 -0.02493

3 0.00374 -0.06587

4 0.00603 -0.1140

5 0.00709 -0.1586 -0.0821 4.541

6 0.00902 -0.2044

7 0.01001 -0.2458

8 0.01174 -0.2942
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Fig. 6. Regression fitting result. (a) ϵn,dcorner,ddense vs. ddense; (b) An,dcorner vs. dcorner; (c) Bn,dcorner vs. dcorner;
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Fig. 7. Validation for the proposed model.

where Cn and Dn are coefficients depends on tag number n, E
and F are constant coefficients. We could further fit Cn and
Dn by n, however, since the tag number could be integers
only and massive curve fitting influences the accuracy of error
model, Table. I has been provided for Cn and Dn regarding
different tag number n. Fitting result for An,dcorner and Bn,dcorner

have been depicted in Fig. 6(b) and (c) respectively and the
final model for averaging localization error can be given as

ϵn,dcorner,ddense = (Cn×dcorner +Dn)×ddense +E×dcorner +F

= Cn×dcorner ×ddense +Dn×ddense +E×dcorner +F
(11)

where Cn, Dn, E and F can be found in Table. I. To further
validate the proposed average localization error model, we
select typical measurement cases and compare it with the
software simulated localization error model. As shown in
Fig. 7, given n = 4, the empirical measurement result in
Fig.7(a) has a highly agreement with simulated error model
in Fig. 7(b), which further prove the validity of the proposed
average localization error model.

V. CONCLUSION

The major contribution of this paper is that we analyzed the
effect of calibration tag number, tag-to-corner distance and tag
density on average localization error for the RFID assisted iner-
tial navigation system with multiple calibration. Mathematical
model has been proposed for deployment optimization and it
also facilitates the future study on algorithm design, system
evaluation and application development.

REFERENCES

[1] J. He, Y. Geng, Y. Wan, S. Li, and K. Pahlavan, “A cyber physical test-
bed for virtualization of rf access environment for body sensor network,”
Sensor Journal, vol. 13, no. 10, pp. 3826–3836, 2013.

[2] J. Bird and D. Arden, “Indoor navigation with foot-mounted strapdown
inertial navigation and magnetic sensors [emerging opportunities for
localization and tracking],” Wireless Communications, IEEE, vol. 18,
no. 2, pp. 28–35, 2011.

[3] Y. Geng, H. Deng et al., “Modeling the effect of human body on
toa ranging for indoor human tracking with wrist mounted sensor,”
in Wireless Personal Multimedia Communications (WPMC), 2013 16th
International Symposium on. IEEE, 2013, pp. 1–6.

[4] R. W. Ouyang, A.-S. Wong, and C.-T. Lea, “Received signal strength-
based wireless localization via semidefinite programming: noncooper-
ative and cooperative schemes,” Vehicular Technology, IEEE Transac-
tions on, vol. 59, no. 3, pp. 1307–1318, 2010.

[5] Y. Ma, L. Zhou, K. Liu, and J. Wang, “Iterative phase reconstruction
and weighted localization algorithm for indoor rfid-based localization in
nlos environment,” Sensor Journal, IEEE, vol. 14, no. 2, pp. 597–611,
2014.

[6] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: indoor location
sensing using active rfid,” Wireless networks, vol. 10, no. 6, pp. 701–
710, 2004.

[7] A. R. J. Ruiz, F. S. Granja, J. C. Prieto Honorato, and J. I. G. Rosas, “Ac-
curate pedestrian indoor navigation by tightly coupling foot-mounted
imu and rfid measurements,” Instrumentation and Measurement, IEEE
Transactions on, vol. 61, no. 1, pp. 178–189, 2012.

[8] J. Guerrieri, M. Francis, P. Wilson, T. Kos, L. Miller, N. Bryner,
D. Stroup, and L. Klein-Berndt, “Rfid-assisted indoor localization and
communication for first responders,” in Antennas and Propagation,
2006. EuCAP 2006. First European Conference on. IEEE, 2006, pp.
1–6.

[9] Y. Geng, J. Chen, and K. Pahlavan, “Motion detection using rf signals
for the first responder in emergency operations: A phaser project,” in
Personal Indoor and Mobile Radio Communications (PIMRC), 2013
IEEE 24th International Symposium on. IEEE, 2013, pp. 358–364.
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