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Abstract—In this paper, we derive and analyze cooperative
localization bounds for endoscopic wireless capsule as it passes
through the human gastrointestin (GI) tract. We derive the
Cramer-Rao lower bound (CRLB) variance limits on location
estimators which use measured received signal strength(RSS).
Using a three-dimension human body model from a full wave
simulation software and log-normal models for RSS propagation
from implant organs to body surface, we calculate bounds on
location estimators in three digestive organs: stomach, small
intestine and large intestine. We provide analysis of the factors
affecting localization accuracy including various organ environ-
ments, external sensor array topology and number of pills in
cooperation. The simulation results show that the number of
receiver sensors on body surface has more influence on the
accuracy of localization than the number of pills in cooperation
inside the GI tract.

I. INTRODUCTION

Recently, wireless capsule endoscopy (WCE) has attracted

lots of attention due to its non-invasive nature. Furthermore, it

allows the physician to visualize the entire gastrointestinal (GI)

tract without scope trauma and air insufflations. Traditional

techniques such as gastroscopy and colonscopy can only reach

the first few or last several feet of the GI tract. Despite the

advantages the WCE have, it is reported that a physician

spends one or two hours to assess the photos taken during

each WCE examination, since approximately fifty thousands

photos are taken during the eight hours period of examination

[1]. This slows down the process of examination and increases

the cost of the procedure significantly. Meanwhile, after the

examination by WCE, the physician may want to revisit the

sites of interest for further diagnosis or treatment. Accurate

location information of the capsule can help in both reducing

the time needed for assessing the photos and assisting the

physicians for follow-up interventions.

Various technologies for localization of the capsule have

been explored in feasibility studies. The original idea is to

use a spatially scanning system to locate the points with the

strongest RSS. The system is non-commercial and cumber-

some. Frisch et al[2] developed a RF triangulation system

using an external sensor array that measures signal strength

of capsule transmissions at multiple points and uses this

information to estimate the distance. The average experimental

error is reported to be 37.7mm [3]. Other techniques include

ultrasound [4], time of arrival (TOA) based pattern recognition

[5], magnetic tracking [6],[7] and computer vision [8],[9].

Among these technologies, RF signal based localization

systems have the advantage of application-non-specific and

relatively low cost for implementation. Therefore, it has been

chosen for use with the Smartpill capsule [10] in USA and

the M2A capsule [11] in Israel. Generally, the RF localization

technique is based on TOA, angle of arrival (AOA) or received

signal strength (RSS) measurements. A widely known benefit

of TOA based techniques is their high accuracy compared to

RSS and AOA based techniques. However, the strong absorp-

tion of human tissue causes large errors in TOA estimation and

the limited bandwidth (402-405MHz) of the Medical Implant

Communication Services (MICS) band prevent us from high

resolution TOA estimation. The problem is made even worse

by the GI movement, and the filling and emptying cycle,

resulting in unpredictable ranging error [12]. Thus, the ranging

information from TOA estimation is not promising with the

current technology.

The RSS based techniques are less sensitive to bandwidth

limitation and harsh propagation environment.There are basi-

cally two ways to use the the RSS information for localization,

triangulation and pattern recognition. In this paper, we only

address the issues related to RSS triangulation techniques. RSS

Triangulation technique is based on the path loss model from

implant tissues to body surface. The model is used to calculate

the distance between each external sensor and the capsule, then

at least 4 link distances are used to calculate the location of

the capsule in 3D space.

Currently, most of the researchers have focused on devel-

oping the algorithms and mathematical models for solving

the triangulation problem [3],[13]. In this paper, we take a

different approach. Based on the statistical implant path loss

model developed in [14], we focus on the accuracy possible

for capsules in the GI tract using RSS based triangulation tech-

nique, Yi etc have developed the localization bound calculation

for single pill situation in [15]. The CRB presented in this

paper quantify the limits of localization accuracy with certain

reference-points topology, implant path loss model and number

of pills in cooperation. Our aim is to analyze the accuracy

achievable at various organs and determine if the accuracies

are enough for endoscopy applications. Similar works have

been done for indoor geolocation applications [16] and robot
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localization applications [17].

We begin in Section II by summerizing the performance

evaluation methodology which includes the scenario descrip-

tion and the implant to body surface path loss model for

GI tract environment. Next, using the coordinates value from

scenario and the path loss model, we derive the CRB for

cooperative capsule localization in section III. In section IV,

we provide results of simulation which highlight the network

and organ location parameters that affect the localization

accuracy. Finally, we conclude the paper in section V.

II. PERFORMANCE EVALUATION METHODOLOGY

1) Performance evaluation scenario: The GI tract consists

of the esophagus, stomach, small intestine, and large intestine,

as shown in Fig.1. In order to create a simulation scenario

Fig. 1. A schematic of the GI tract. The typical path of a WCE is shown
by the dashed black line

for calculating the CRB of wireless capsule as it travels

through the human digestive system, we use a 3D human

model from the three-dimensional full-wave electromagnetic

field simulation system (Ansoft [18]). The 3D human body

model has a spatial resolution of 2 millimeters and includes

frequency dependent dielectric properties of 300+ parts in a

male human body. We extract the 3D coordinates of digestive

organs from the human body model, which is illustrated in fig.

2.

(a) Stomach (b) Small Intestine (c) Large Intestine

Fig. 2. Simulation scenarios

For the design of the topology of receiver sensors on body

surface, we followed the idea in [2], assuming the receiver

arrays are placed on a jacket wared by the patient during the

examination. Same number of receivers are fixed in front and

on the back of the jacket. We calculated the CRB for 8,16,32

and 64 receiver sensors with a three dimensional range of

268 × 323 × 312millimeters, a typical network topology for

32 receiver sensors is illustrated in Fig.3

Fig. 3. WCE cooperative localization scenario

2) Path loss model for GI tract environment: In this subsec-

tion, we describe the statistical implant to body surface path

loss model which is used for calculating the CRB of WCE

localization. The model was developed by National Institute

of Standards and Technology (NIST) at MICS band [14]. The

main components used for developing the model include: a

three-dimensional human body model, the propagation engine

which is a three-dimensional full wave electromagnetic field

simulator, the 3D immersive & visualization platform and

implantable antenna.

The path loss in dB at some distance d between the

transmitter and receiver can be statistically modeled by the

following equation:

Lp(d) = Lp(d0) + 10α log10(d/d0) + S(d > d0) (1)

where d0is the reference distance (i.e. 50mm), and α is the

path loss gradient which is determined by the propagation

environment. For example, in free space, α = 2. As we

already mentioned, human body tissue strongly absorbs RF

signal. Therefore, much higher value for the path loss gradient

is expected. S is a random variable log-normally distributed

around the mean which represents the deviation caused by

shadowing effect of human tissue.

The parameters of the implant to body surface path loss

model are summarized in table I.

TABLE I
PARAMETERS FOR THE STATISTICAL IMPLANT TO BODY SURFACE PATH

LOSS MODEL

Implant to Body Surface Lp(d0)(dB) α σdB

Deep Tissue 47.14 4.26 7.85

Near Surface 49.81 4.22 6.81

where σdB is the standard deviation of shadow fading S.

Note that there are two sets of parameters for path loss from

deep and near surface implant to body surface. During our

simulation, we use 10cm distance between the transmitter and

receiver on body surface as the threshold for choosing the

model. If the distance is less than 10cm, we use the near

surface to surface path loss model, otherwise the deep tissue

to surface model is used, One illustration of how we select

the models for various receiver sensors shown in Fig. 4

III. CRB FOR 3D CAPSULE LOCALIZATION
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Fig. 4. Path loss model selection(32 receiver sensors, stomach)

Based on the path loss model in section II, we derive the

3D CRB for cooperative localization in WCE. The scenario

we consider is as follows, N wireless endoscopic capsules

are distributed in the digestive system with location given

by θc = [p1, ..., pN ]. These pills are blindfolded devices but

they can measure the RSS from each other and transmit the

information out to the receiver array for further processing. M
receiver sensors are placed on the surface of the human body

with location given by θr = [pN+1, ..., pN+M ]. The vector of

device parameters is θ = [ θc θr ]. For this three dimensional

system, pi = [xi, yi, zi]
T , where i ∈ [1, N + M ] and T is the

transpose operation. The unknown parameters to be estimated

can be represented by a 3 × N coordinates matrix.

θc = [p1, p2, ..., pN ] =





x1 x2 ... xN

y1 y2 ... yN

z1 z2 ... zN



 (2)

Consider devices (devices include capsules and receivers)i
and j make pair-wise observations Xi,j . We assume each

receiver sensor can measure the RSS from all the capsules

inside the body, but the path loss parameters for different

links varies as the distance between the receiver sensor and

capsule inside the body changes. Therefore, Let H(i) =
{j :device j makes pair-wise observations with device i}.

H{i} = {1, ...i − 1, i + 1, ...N + M} for i ∈ [1, N ] and

H{i} = {1, ...N} for i ∈ [N + 1, N + M ] because a device

cannot make pairwise observation with itself and the receivers

do not make observations with receivers either. Therefore the

length of the observation vector X is N×(N+M−1)+M×N .

By reciprocity,we assume Xi,j = Xj,i; Thus, it is sufficient

to consider only the lower triangle of the observation matrix

X when formulating the joint likelihood function [19]. The

CRB on the covariance matrix of any unbiased estimator θ̂ is

given by [20]:

cov(θ̂) = E
[

(θ̂ − θ)(θ̂ − θ)T
]

≥ F−1
θ (3)

where E [·] is the expectation operation and F is the Fisher

information matrix (FIM) defined as:

Fθ = −E∇θ(∇θ ln f(X |θ))T

= Eθ[
∂
∂θ ln f(X |θ)( ∂

∂θ ln f(X |θ))T ]

=





FRxx FRxy FRxz

FT
Rxy FRyy FRyz

FT
Rxz FT

Ryz FRzz



 (3D situation)

(4)

where f(X |θ) is the joint PDF of the observation vector X
conditioned on θ. For the RSS measurements case, the Xi,j

are log-normal random variables, and the density is given by

[19]

f(Xi,j |pi, pj) = 10/ log 10√
2πσ2

dB

1
Xi,j

exp

[

− b
8 (log

d2

i,j

d̃2

i,j

)2
]

b = ( 10α
σdB

)2

d̃i,j = d0(
X0

Xi,j
)

1

α

di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

(5)

for i = 1, 2..., N + M and j ∈ H(i), d̃(i, j) is the MLE of

range di,j given received power Xi,j . Then the logarithm of

the joint condition pdf is:

l(X |θ) =
M+N
∑

i=1

∑

j∈Hij<i

log fX|θ(Xi,j |pi, pj) (6)

It is shown in [19] that the 2nd partial derivative of (6)

w.r.t θr and θs will be a summation of terms if θr and θs are

coordinates of the same device k, but will be only one term if

θr and θs are coordinates of different devices k and l, k 6= l.
For example:

∂2l(X|θ)
∂xk∂zk

= −b
∑

i∈H(k)
(xi−xk)(zi−zk)

d4

i,k

[

− log
d2

i,k

d̃2

i,k

+ 1

]

∂2l(X|θ)
∂xk∂zl

= −bIH(k)(l)
(xi−xk)(zi−zk)

d4

i,k

[

log
d2

i,k

d̃2

i,k

− 1

]

(7)

where IH(k)(l) = 1 if l ∈ H(k) and 0 otherwise. Since

E(
d2

i,k

d̃2

i,k

) = 0. Thus, the elements of Fθ are:

[FRxx
]k,l =







b
∑

i∈H(k)
(xk−xi)

2

d4

ki

k = l

−bIH(k)(l)
(xk−xl)

2

d4

kl

k 6= l
(8)

[FRxy
]k,l =

{

b
∑

i∈H(k)
(xk−xi)(yk−yi)

d4

ki

k = l

−bIH(k)(l)
(xk−xl)(yk−yl)

d4

kl

k 6= l

[FRxz
]k,l =

{

b
∑

i∈H(k)
(xk−xi)(zk−zi)

d4

ki

k = l

−bIH(k)(l)
(xk−xl)(zk−zl)

d4

kl

k 6= l

[FRyy
]k,l =







b
∑

i∈H(k)
(yk−yi)

2

d4

ki

k = l

−bIH(k)(l)
(yk−yl)

2

d4

kl

k 6= l
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[FRyz
]k,l =

{

b
∑

i∈H(k)
(yk−yi)(zk−zi)

d4

ki

k = l

−bIH(k)(l)
(yk−yl)(zk−zl)

d4

kl

k 6= l

[FRzz
]k,l =







b
∑

i∈H(k)
(zk−zi)

2

d4

ki

k = l

−bIH(k)(l)
(zk−zl)

2

d4

kl

k 6= l

Let x̂i, ŷi, ẑi be the unbiased estimation of xi, yi, zi, the trace

of the covariance of the ith location estimate is given by:

σ2
i = tr {covθ(x̂i, ŷi, ẑi)}

= V arθ(x̂i) + V arθ(ŷi) + V arθ(ẑi)

≥
[

FRxx
− (FRxy

FRxz
)

(

FRyy
FRyz

FRyz
FRzz

)−1 (

FRxy

FRxz

)

]−1

i,i

+

[

FRyy
− (FRxy

FRyz
)

(

FRxx
FRxz

FRxz
FRzz

)−1 (

FRxy

FRyz

)

]−1

i,i

+

[

FRzz
− (FRxz

FRyz
)

(

FRxx
FRxy

FRxy
FRyy

)−1 (

FRxz

FRyz

)

]−1

i,i
(9)

IV. SIMULATION RESULTS

A. Setup

The simulation setup is based on the application of WCE

requiring localization of capsule in stomach, small intestine

and large intestine environments. Esophagus is not included

as a simulation scenario because traditional upper endoscopy

techniques are powerful enough to diagnose diseases in it. M

receiver sensors are distributed evenly on the surface of the

body torso, see figure 3. N capsule pills are then distributed

inside the GI tract environment. Connectivity is assumed

between capsule pills and the receiver sensors and among

capsule pills. The path loss parameters are determined by the

length of each connection as mentioned in section II.

For the analysis of the simulations, we compute the average

RMS of the location error of each situation. For the case of

N different capsule locations, the RMSE is computed by:

RMSE =

√

∑N
i=1 σ2

xi
+ σ2

yi
+ σ2

zi

N
(10)

where σ2
xi

, σ2
yi

and σ2
zi

are the variance of each coordinate

value of the ith pill location.

B. Effect of organ shape and location

In this subsection, we evaluate the impact of the organ shape

and location on localization accuracy. For the simulation, we

fixed the number of receiver sensors to 32 and assumed only

one single capsule in each organ. We calculated the 3D-CRB

for all the possible location points inside each organ (634

points for stomach, 1926 points for small intestine and 3334

points for large intestine). Figure 5 shows the CDF comparison

of location error bound in different organs.

Notice that the localization error for capsule in small

intestine is apparently smaller than that in large intestine. The
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Fig. 5. CDF comparison of location error bound in stomach, small intestine
and large intestine

average value of σerror for small intestine environment is

45.5mm, while it is 49mm for large intestine environment.

The localization error for capsule in stomach has the lowest

average value but distributed in a wider range compared

to the errors in other two environments. These observations

can be explained by the geometric relationship between the

sensor array and the organs. As we can see from fig. 4,

stomach is located in the upper part of the receiver sensor

array system, and its volume is the smallest among the three

organs. Therefore, the localization error varies more in the

stomach environment. The points located in the upper part of

stomach have larger localization error value as they are far

from the center of the receiver array system, the points in the

lower part of stomach have smaller localization error value.

The small intestine is located in the center part of human

abdomen cavity and the lumen is more centralized compared

to large intestine. Therefore, the localization error inside small

intestine is smaller than that in large intestine.

C. Effect of number of receiver sensors

In this subsection, we investigate the impact of number of

receiver sensors on localization accuracy. In this experiment,

12000 Monte Carlo simulations (3 different organs, 4 different

number of receiver sensors and 1000 simulations per organ)

were carried out with the number of receiver sensors varied

from 8 64. During each simulation, we assume one capsule is

located randomly inside each organ. The results show that the
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Fig. 6. Localization performances as a function of number of receiver sensors
in different organs

number of receivers has significant influence on the accuracy

of localization when the number of receivers is smaller than

32. The localization accuracy in small intestine is less sensitive

to the number of receivers. This means that large intestine and
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stomach are harsher implant environments for RF localization

which requires more receiver sensors on body surface to

achieve similar localization performance as environments with

better geometric and channel condition. Finally, notice that for

all the three organs, at least 32 receiver sensors are needed to

guarantee the performance of 50mm average RMSE.

D. Effect of number of Pills in cooperation

Lastly, we investigate the impact of cooperation among pills.

For this simulation, we fixed the number of receivers on body

surface to 32 and increased the number of pills from 1 to 5.

The pills are assumed to be randomly distributed inside each

organ and they can measure the RSS from each other. 15000

simulations were carried out to study the effect of cooperation

among pills. The results are presented in fig. 7. It is shown that
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Fig. 7. Localization performances as a function of number of number of
pills in different organs

as the number of pills increase from 1 to 5. the localization

accuracy in all 3 organs improved, especially for large intestine

and stomach environments. Localization accuracy in small

intestine is again less sensitive to the number of pills which

means it is a lighter environment for RF propagation and

geometrically better surrounded by the receiver array. Notice

that in practical situations, we do not want to send a lot of

capsules into a patient due to the potential danger of digestion

disorder and uncomfort for patient. Compared to the impact of

number of receiver sensors, the number of pills in cooperation

has less influence on the accuracy of localization. Therefore,

our results indicate that increasing the number of receiver

sensors on body surface is a more effective way to improve the

overall localization performance than increasing the number of

pills in cooperation for RSS based capsule localization.

V. CONCLUSION

In this paper, we investigated the potential accuracy limit

for RSS triangulation based capsule localization in the human

GI tract. We verified the possibility of achieving average

localization error 50mm in the digestive organs. We also

verified that more than 32 sensors on body surface is needed

for achieving satisfying localization accuracy for capsule en-

doscopy. Simulation results showed that increasing the number

of receiver sensors on body surface has more influence of the

overall localization performance than increasing the number of

pills inside the GI tract.Also considering the practical issues,

we draw the conclusion that increasing the number of receiver

sensors is a better way for reaching higher accuracy for capsule

localization.
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